Supplier Spotlight

Video Exclusives

VSS Unity completes first ‘feather’ re-entry system flight test

On May 1, 2017, VSS Unity’s ‘feather’ re-entry system was activated in flight for the first time.

Click here to watch video

4 May, 2017

Successful testing of NASA Orion ACM

On April 27, 2017, Orbital ATK successfully completed a test fire of the company’s attitude control motor (ACM) for NASA’s Orion crew exploration vehicle.

Click here to watch video

4 May, 2017


To watch more videos, click here

Industry Opinion

« back to blog listings

Flight simulators: passe or the future?

Pilot-in-the-loop simulation was once the centerpiece of forward-looking technology in the aerospace industry. In an industry where product lifecycles span decades, it became possible to progress from initial concept to ‘flight’ test in a matter of days. However, the underlying concepts have remained fundamentally unchanged since the initial inception and use of flight simulation.
Flight simulation ‘progress’ has been mostly in graphics for the visual environment. More impressive graphical output does not necessarily improve the overall fidelity of the simulation. Once a basic acceptable level is reached, additional detail does not affect the way pilots use visuals to control their aircraft. This assumes the maneuver in question requires substantial use of external visual references – often not the case. Surely there must be a more effective use of computing power than producing superficial visual improvements?
While graphics are undoubtedly improving, the fundamental idea of simulating visuals has not changed for more than 40 years.
Emergent technologies such as virtual and augmented reality are so far confined to the realms of niche video gaming, but have the potential to deliver more immersive and easily reconfigurable simulations.
Perhaps testing should be finding new and interesting ways to make use of these technologies, rather than just throwing money at making better versions of the same graphics. Rapid prototyping of changes to cockpit controls and displays in a high-fidelity simulator could offer huge efficiency savings and result in a better end product. However, such is the complexity of modern simulators that the embodiment of modifications is often just as onerous as in a real aircraft cockpit.
Pilot-in-the-loop simulators are no longer novel and innovative, but are ‘part of the furniture’ for aircraft development. While they fulfill an important function, development has succumbed to the lack of inertia associated with large aerospace projects. The challenge for the next generation of engineers is to identify technologies and techniques that can offer the same potential step change in capability that originally brought simulation into the mainstream test community. If such potential is genuine, it is impossible to argue against.

Garnet Ridgway has a PhD from the UK's University of Liverpool. He has designed cockpit instruments for Airbus and currently works for a leading UK-based aircraft test and evaluation organization

Flight simulation has evolved to become a key part of aerospace testing. Many of the airborne activities once dominated by flight test are now undertaken in simulators, and the simulation industry is still a rapidly developing one.
The use of simulation in testing and training began in the late 1920s with the development of the Link Trainer – a synthetic trainer used to provide pilots with instrument flying experience. Over time, the complexity and fidelity of simulation systems has increased, enabling increasing reliance on testing without flight. While my co-author argues that there is little to be gained from superficial increases in the graphical qualities of the visual environment (which is very true) and that the step change seen in other areas of aerospace technology has been long overdue in the simulation industry, advances are still being made.
Hardware technology may have somewhat stagnated, yet our understanding of how simulation delivers transfer of training, and how it can be used to reduce flight hours in testing, has continued to improve. Engineers have become more able to carry out hardware-in-the-loop testing, enabling earlier evaluation of novel systems. Issues are identified early, and it avoids repetition of the usual fly-fix-fly cycle, which is inefficient and costly.Engineers are also exploiting more off-the-shelf technology. An understanding about the required levels of simulation fidelity increases, new routes to achieving the desired outcomes of simulation-based testing are developed, further reducing the time required and consequently the cost of testing.
As a consequence of these developments, simulation is now able to support the entire life of the product, not just the testing phase.
Looking to the future, this reliance on simulation will only increase. Couple this with the increasing capabilities of aerospace systems, and the fact that the limitations of our current simulation technology are frequently revealed by flight testing, and engineers are faced with a real challenge: how can we continue to advance our simulation capabilities to meet the demands of novel aircraft, while continuing to reduce the costs and time spent in flight testing?

Sophie Robinson works at the front line of aerospace testing as a rotary-wing performance and flying qualities engineer for a leading UK-based aircraft test organization. She also holds a PhD in aerospace engineering from the University of Liverpool




There are currently no comments.

If you would like to post a comment about this blog, please click here.
Read Latest Issue

Read Latest Issue

Web Exclusives

Before the first engineering manufacturing and development Sikorsky HH-60W helicopter takes to the air in 2018, infrastructure and test facility developments on the ground are being completed
Click here to read more

Embraer is making rapid progress through the test campaign for its advanced KC-390 multirole airlifter as it heads toward IOC with the Brazilian Air Force later this year
Click here to read more

The latest in Bombardier’s line of Global business aircraft, the Global 7000 achieved first flight in November 2016. Steve Patrick, director, flight test operations and safety, Global 7000 Flight Test Team, discusses the type’s busy, five-aircraft flight test program
Click here to read more

The UK’s National Physical Laboratory has developed the first high temperature solid particle erosion test to incorporate metrology
Click here to read more

Embraer has passed through the 25% point in its 2,000-hour E2 trials campaign – its nine-prototype effort should see the next-generation airliner variants enter service in 2018, 2019 and 2020
Click here to read more

Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the aerospace testing industry. Want to see your company included? Contact for more details.

فروشگاه اینترنتی فروشگاه اینترنتی سیستم همکاری در فروش کانال تلگرام چت روم ماهواره آنلاین اندروید دانلود فیلم مرکز خرید ایرانیان

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the aerospace testing community? Good or bad, we'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email