Supplier Spotlight

Video Exclusives

James Webb Space Telescope cryogenic testing time lapse

With its nine-month stay in Texas coming to an end, this time-lapse shows activity in the NASA Johnson Space Center's Chamber A cleanroom from the arrival of the Webb Telescope's optical and instrument segment through to its roll out from the chamber after completing its cryogenic testing.

Click here to watch video

17 January, 2018



Boeing tests large cargo drone

In less than three months, a team of engineers designed and built the unmanned cargo air vehicle (CAV) prototype. The innovative vehicle will be used to test and evolve Boeing’s autonomous technology for future aerospace vehicles.

Click here to watch video

17 January, 2018

 

To watch more videos, click here

The Atlas V Launcher and CST-100 Starliner's is on track to return the USA's capability to put humans into space without the Russian Soyuz spacecraft, possibly by the end of 2018. But, with the benefit of hindsight, do you think the Space Shuttle program, which ran from 1981 to 2011, was a misstep in the US-space program?

News

NASA tests the Webb Telescope’s communication skills

NASA called and the Webb telescope responded. NASA’s James Webb Space Telescope recently completed its Ground Segment Test Number 1 (GSEG-1), for the first time confirming successful end-to-end communication between the telescope and its mission operations center.

GSEG-1, which completed on June 20, tested all of the communications systems required to support the telescope’s launch, commissioning and normal operations once it is in orbit. The test showed successful end-to-end communication between the Webb telescope’s spacecraft bus, currently located at Northrop Grumman Aerospace Systems in Redondo Beach, California, and the telescope’s mission operations center at the Space Telescope Science Institute in Baltimore, Maryland. Before this test, the flight operations team had only verified communication with the telescope piecemeal — in several smaller tests that were not end-to-end.

During the test, the team sent the same command procedures to the telescope that will be sent during its nearly one-million-mile journey to its orbit at the second Lagrange point, known as L2. The team verified the configuration of the telescope’s onboard computers and also received telemetry from the telescope, including science data and health monitoring data.

The ground segment test consisted of two parts — the Space Network (SN) portion and the Deep Space Network (DSN) portion.

The eight‑hour‑long SN portion of the test, completed on May 24, tested all of the communications systems required during Webb’s launch phase. During this portion of the test, the team successfully exchanged commands and telemetry with the telescope using NASA’s Tracking and Data Relay Satellite (TDRS) network.

The 13‑hour‑long DSN portion of the test, completed on June 20, tested communications systems that will be used from the end of Webb’s launch phase through the end of the mission. During this portion of the test, the team successfully exchanged commands, telemetry and ranging data with the telescope, as well as offloaded information from the telescope’s data recorders.

The DSN comprises three ground stations, located about 120 longitudinal degrees apart from each other on Earth — one each in Canberra, Australia; Madrid, Spain; and Goldstone, California. The placement of these guarantees the Webb telescope will be able to contact at least one station at all times, to remain in constant communication with Earth. For this test, the telescope communicated with a specially designed trailer that mimics these ground stations, rather than the ground stations themselves.

Another communications test will take place at the telescope’s planned launch site in Kourou, French Guiana, about a month before launch in late 2018. This test will demonstrate the expected connectivity with the telescope at first contact with it, which will occur approximately three-and-a-half minutes after launch.

NASA’s James Webb Space Telescope is the world’s most advanced space observatory. This engineering marvel is designed to unravel some of the greatest mysteries of the universe, from discovering the first stars and galaxies that formed after the big bang to studying the atmospheres of planets around other stars. It is a joint project of NASA, ESA (the European Space Agency) and the Canadian Space Agency.

August 2, 2017

Written by Michael Jones


RECEIVE THE
LATEST NEWS


Your email address:



Read Latest Issue

Read Latest Issue

Web Exclusives

In just six months, the US Air Force publicly announced and flew its Light Attack Experiment, pitching four platforms against a series of demanding mission objectives
Click here to read more

A new flight test project led by Airbus spearheads an EU effort to see if laminar-flow wings can be produced on an industrial scale
Click here to read more

BAE Systems’ structural test team at Brough has now completed a third cycle of F-35A fatigue testing
Click here to read more

Two leading test pilot schools continue to invest in aircraft, equipment and new approaches to better meet the changing needs of industry 
Click here to read more

What role will wind tunnels play in the testing of future aircraft? NASA’s latest supersonic testing program provides some clues
Click here to read more


Supplier Spotlight

Supplier SpotlightClick here for listings and information on leading suppliers covering all aspects of the aerospace testing industry. Want to see your company included? Contact tom.eames@ukimediaevents.com for more details.

Submit your industry opinion

Industry BlogDo you have an opinion you'd like to share with the aerospace testing community? Good or bad, we'd like to hear your views and opinions on the leading issues shaping the industry. Share your comments by sending up to 500 words to anthony.james@ukimediaevents.com

Submit Your Recruitment Ad

Recruitment AdTo send us your recruitment advertising or to receive information on placing a banner please email ben.sampson@ukimediaevents.com